
Storing high-performance computing data
using Storj Decentralised Cloud Storage

Dr. Antonin Portelli (The University of Edinburgh) - 13th of October 2021

Disclaimer: This report was written as a personal research initiative from the author, in discussion with Storj. Storj
contributed bandwidth and storage free of charge to perform the benchmarks detailed below. This report cannot
be shared or modified without explicit consent from the author. This report does not constitute in any way an
endorsement of Storj or services provided by Storj by the funding agencies and institutions supporting the author.
The results in this report should not be interpreted as an absolute or reliable measurement of the total bandwidth
available from the systems and services involved in the data transfers.

Acknowledgements: The author warmly thanks the Storj team for the numerous interesting technical discussions
and insights around this study. The author would also like to thank Dr. Oliver Witzel from the University of Siegen
for running the download tests on systems in the USA.

Introduction and objectives
A rapidly increasing number of fields in fundamental science are generating large datasets for their
research, and questions around the availability of this data on the long term are becoming more and more
critical. Two important underlying aspects are the resilience and geographical availability of the data.
Regarding the former, data related to published scientific work generally have a significant cost to be
generated, and it is crucial to insure that it can be stored safely for the next decade and possibly more.
Additionally, scientific collaborations generally have an important international dimension, and there is
some interest for the data to be available as independently as possible from the original upload location.

Emerging decentralised technologies, where data is fragmented and distributed across a decentralised
network of nodes, are appealing to address the aforementioned challenges. Indeed, they can in principle
allow for a much higher redundancy and geographical spread of the data, allowing strong resilience and
wide availability compared to traditional, centralised datacentre-based infrastructures.

Over the past years Storj developed an enterprise-grade decentralised cloud storage (DCS) service based on
a decentralised network of voluntary node operators containing the data fragments, coordinated by Storj
satellites hosting the metadata. The storage node network is entirely trust-free, i.e. the data is fully
encrypted using keys belonging to the owner, and cannot be accessed in any way by Storj or the node
operators. At the time of writing this report, the Sort DCS network was made of around 12,000 nodes
offering around 30 PB of storage (cf. dashboard here).

The main objective of this study is to qualitatively address the efficiency of Storj DCS for synthetic data
simulating typical large datasets used in HPC, using lattice quantum chromodynamics (QCD) as a
representative example. All the code used to perform the benchmark described below is available freely
(GPL v3) on GitHub. This code only rely on a cloud service being configured in Rclone, and can be used to
benchmark any cloud service compatible with Rclone (cf. complete list here).

Procedure

https://www.storj.io/
https://storjstats.info/
https://github.com/aportelli/cloud-benchmark
https://rclone.org/overview/

The test procedure goes as follows. First, one generates collections of files of equal sizes filled with random
data. File sizes are generally above 1GB, simulating the typical size of gauge field configurations in lattice
QCD. The files are then uploaded to Storj DCS from the DiRAC Tesseract supercomputer at the University of
Edinburgh. The files are then downloaded from a number of other supercomputing centres in the USA and
the download speed is measured. The experiment is repeated by manually splitting the files in chunks of
64MB and reconstructing them after download. During all the tests, file checksums are also uploaded and
downloaded, and data file integrity is verified after download.

One important detail to mention is that the systems where the tests are performed constitute in no way an
ideal benchmark environment. The tests are executed from user space with no control on potential limits
implemented by the computing centres and possible contention with other transfers. The aim is not to
investigate the ideal limits of Storj DCS in term of performances, but rather to provide information on
possible performances in a realistic HPC scenario. Finally, all centres used in the test all have access to state-
of-the-art multi-GB/s access to the Internet.

Synthetic data generation

A large file filled with random data can be created efficiently by generating a random passphrase, and then
encrypting a stream of zeros using this passphrase. This can be achieved using OpenSSL and the dd
command in the following way

where FILENAME is the generated file name and SIZEMB its size in MB. A checksum for the file is then
computed using the high-performance XXH128 hash

File chunking

In order to have more manual control on file transfer parallelisation, data files can be split into chunks
manually before upload using the split command

where SIZE is the size of one chunk. A data file can be reconstructed from its chunks simply using the cat
command

assuming only chunks are captured by the pattern in the find command, more filtering might be needed
in practice. The XXH128 checksum is only considered on the full file, therefore also checking that the file
reconstruction did not corrupt the data.

PASS=$(dd if=/dev/urandom bs=128 count=1 2>/dev/null | base64)
dd if=<(openssl enc -aes-256-ctr -pass pass:"${PASS}" -nosalt </dev/zero 2>/dev/null) \
 of="${FILENAME}" bs=1M count=${SIZEMB} iflag=fullblock

xxh128sum ${FILENAME} > ${FILENAME}.xxh128

split --verbose -a 4 -b ${SIZE} -d "${FILE}" "${FILE}."

cat $(find . -name "${FILE}.*" | sort) > ${FILE}

https://www.openssl.org/
https://github.com/Cyan4973/xxHash

File transfer

Upload and download of files on Storj DCS are performed using the Rclone utility. A native Storj DCS remote
is configured in Rclone (using the storage type with the legacy name tardigrade). Files are uploaded to a
cloud-benchmark bucket with high verbosity and a linear log for further data analysis.

where DIR is the directory containing the files to upload, REMOTE is the name of the Storj DCS Rclone
remote, and RCLONE_EXTRA are potential user-provided options for Rclone.

Geographical location analysis

NB: The procedure described here is not functional anymore after the spring 2021 major upgrade of Storj DCS. The
share links now only contain an image of the distribution map, and the locations are absent from the page's
source code.

 Storj does not provide an explicit API to access the geographical location of the decentralised file fragments
[TODO: is that right?]. However, the Uplink utility can generate a URL to share a given file, and the
associated web page display a map of the fragment locations. The explicit array of latitudes and longitudes
of the fragments are given explicitly in the Javascript code of the map. One can then automatise the retrieval
of the locations by parsing directly the page code and converting them into a space-separated value file.

Data transfer performances
Adopting the strategy described above we generated 10 files of 3.8 GB each filled with random data. The
dataset was duplicated by splitting each file into 60 chunks of 64MB. This chunk size was communicated as
optimal by Storj engineers. For every transfer test, the data was transferred in its original form, and then the
transfer was repeated using the chunked versions to take advantage of parallelisation.

In all transfers described in this section, we used the option --transfers ${CPU} for Rclone (substituting
RCLONE_EXTRA above), where CPU is the number of CPU cores on the server (generally 24 or 32). This
option allows to transfer several files in parallel and increase the throughput.

All the tests described here were performed between January and February 2021.

rclone mkdir "${REMOTE}":cloud-benchmark
rclone -vv --stats 1000ms --stats-one-line ${RCLONE_EXTRA} copy ${DIR} \
 "${REMOTE}":cloud-benchmark/ensemble

URL=$(uplink share --url sj://cloud-benchmark/${FILE} | grep -E '^URL' | awk '{print
$3}')
curl -sL ${URL} | grep 'var routes' | grep -Eo '\[[^]+\]' > ${LOC}
sed -E 's/\[?\{"Latitude":([0-9.-]+),"Longitude":([0-9.-]+)\},?\]?/\1 \2\n/g' ${LOC} >
${FILE}.loc.dat

https://rclone.org/
https://www.storj.io/integrations/uplink-cli

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70

up
lo

ad
 ra

te
 (M

B/
s)

time (s)

U. of Edinburgh
U. of Edinburgh (64MB chunks)

Figure 1 - Upload rates to Storj DCS. For better visibility the time interval was zoomed to the duration of the
faster chunked transfer. The plain transfer maintained stable performances until it was completed.

Upload

The synthetic data was uploaded from the DiRAC Tesseract supercomputer at the University of Edinburgh,
using the Storj EU1 satellite. The results are plotted in Fig. 1. We observed a significant benefit from
parallelising the transfer over a chunked dataset, leading to higher upload rates by more than a factor of 6
(roughly 650 MB/s vs. 100 MB/s).

Download

The data uploaded from Edinburgh was then downloaded from various supercomputing systems in the
USA, and also in Edinburgh. The results for are plotted in Fig. 2 for the original dataset, and in Fig. 3 for the
chunked dataset. Unsurprisingly, the best rates were obtained from Edinburgh, likely benefitting from some
locality of the data in Europe. The impact of chunking appears to be more marginal than for upload rates.
More precisely, chunking seems to improve download rates by 10%-30% depending on the location. Overall,
maybe at the exception of Oak Ridge National Laboratory, we obtained healthy rates of several of hundreds
MB/s.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140

do
wn

lo
ad

 ra
te

 (M
B/

s)

time (s)

Berkeley Lab (CA)
Boston U (MA)

U of Texas (TX)
Oak Ridge National Laboratory (TN)

U of Edinburgh (UK)

Figure 2 - Download rates from Storj DCS for the original dataset. A download test was executed in Fermilab
but failed without being repeated.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

do
wn

lo
ad

 ra
te

 (M
B/

s)

time (s)

Berkeley Lab (CA)
Fermilab (IL)

Boston U (MA)
U of Texas (TX)

Oak Ridge National Laboratory (TN)
U of Edinburgh (UK)

Figure 3 - Download rates from Storj DCS for the chunked dataset.

Parallelisation strategies

During the course of this study, Storj engineers implemented native parallelism as part of the Uplink library
provided with their services. This allows to transfer a single file using parallel transfers without needing to
split the file as done above. Using a pre-release version of the command-line tool uplink provided by Storj,
we performed new benchmarks and compared to the manual file splitting described above. These tests
were performed form the DiRAC Tursa supercomputer in Edinburgh.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

up
lo

ad
 ra

te
 (M

B/
s)

time (s)

uplink parallelism 64
uplink parallelism 128
uplink parallelism 192

rclone 64M chunks 128 transfers

Figure 4 - Upload rates to Storj DCS comparing the Storj Uplink program with native parallelisation to
chunking the file as described previously.

The server used has a dual-socket AMD EPYC 7H12 which is a total of 128 cores and 1TB of RAM. The server
and network activity were essentially idle at the moment of the test, constituting a clean benchmark
environment. We generated a single 128 GB file filled with random data as described above. It was then
transferred to and from Storj DCS using the uplink command and the native parallelism flag --
parallelism , and then chunking the file in 64 MB fragments and parallelising through multiple transfers
using Rclone as done previously. The upload performances are shown in Fig. 4. One can observe similar
performances between native parallelism and manual splitting of the file, with marginally higher figures for
manual splitting. When using a high number of transfers with the --parallelism flag, we observed the
transfer becoming unstable and crashing, likely due to a disruptively large CPU activity. Finally, the
download performances are displayed in Fig. 5. In that case, splitting the file manually still provides about
two times the performances of native parallelism.

In conclusion, the native parallelism implemented in the Storj software stack allows for impressive upload &
download rates in the 300-400 MB/s range for a single file transfer. In the case of download rates, splitting
the file manually is still more performant and reach rates above 700 MB/s. However, it is important to say
that splitting the file requires I/O intensive splitting and reconstruction operations which have to be
systematically executed when a file is sent or retrieved from the cloud. Our conclusion is that it is very likely
that optimal performances and convenience will be obtained using Storj native parallelism in combination
with multi-file parallel transfers. This will be possible to achieve when native parallelism options will be
exposed in Rclone, which is currently being implemented.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

do
wn

lo
ad

 ra
te

 (M
B/

s)

time (s)

uplink parallelism 64
uplink parallelism 128
uplink parallelism 192
uplink parallelism 256

rclone 64M chunks 128 transfers

Figure 5 - Download rates from Storj DCS comparing the Storj Uplink program with native parallelisation to
chunking the file as described previously.

Geographical distribution analysis
Using the method described above, we extracted the geographical locations of the file pieces on Storj DCS
network. In all this section we focus on the original dataset (i.e. not the chunked data). The chunked dataset
showed similar properties and is significantly longer to analyse due to the higher number of pieces on the
network. The geographical analysis presented here was performed using Wolfram Mathematica.

The aggregated locations of all the pieces for all the files is plotted in Fig. 4. We counted a total of 30284
pieces on the network. We observe that a large number of pieces are distributed fairly uniformly over
Central Europe. The USA distribution features a large number of pieces highly concentrated on urban zones.
In Fig. 5 we plot the distribution of these pieces by countries, and by states for the USA.

Finally, in Fig. 6 we plot the average download rate (after stabilisation) against the average geodesic distance
between the download location and the locations of all the file pieces on the Storj DCS network. One would
expect anti-correlations to be observed, i.e. low average geodesic distances implies more file pieces
available locally and therefore higher download rates. A trend can be marginally be observed in the plot,
however higher statistics would be necessary to eliminate uncontrolled systematic deviations.

https://www.wolfram.com/mathematica/

Figure 4 - Geographical locations of the datafile pieces on Storj DCS for the original dataset, with zooms over
Europe and the continental USA.

Figure 5 - Geographical location count of the datafile pieces on Storj DCS for the original dataset by country,
and by state for the USA.

Figure 6 - Average download rate in MB/s vs. average geodesic distance between the download location and
file pieces locations on Storj DCS.

Outlook and perspectives

Outlook and perspectives
In this study we measured the upload and download rates of large data files from major supercomputing
centres using Storj DCS. The data was upload from Edinburgh in Scotland and retrieved from a number of
sites in the USA. We managed to push the upload rates to above 600 MB/s by fragmenting manually the files
and parallelising the transfers. Retrieving the files gave download rates between 80 MB/s and 450 MB/s
depending on the location, although in most cases sustained performances above 200 MB/s are observed.

Comparing these performance figures to more traditional, centralised cloud infrastructures is delicate
because of the radically different properties of both strategies. However it is safe to state that these rates
are overall quite impressive, especially considering that thanks to the decentralised nature of the network,
there is no need for researching an optimal network path between the source and the destination.

From an HPC infrastructure point of view, these rates might look inferior to multi GB/s obtainable with HPC
data centres on dedicated national or international research networks with fast links to computing centres.
However this statement needs to be balanced against a number of unique and important advantages
provided by a decentralised network. Firstly, high transfer speeds on dedicated networks might fall off
abruptly as soon as the data is transiting through a point outside of the network, and finding fast paths to
transfer data between sites might be non-trivial and highly dependent on geographical and infrastructure
constraints. Secondly, a decentralised storage infrastructure like the one deployed by Storj is highly resilient
and Byzantine-fault tolerant, which is generally not the case of a traditional datacenter infrastructure.
Regarding this last point, at the moment although the storage of data is indeed fully decentralised and
Byzantine-fault tolerant, users still need to query the metadata to centralised satellites currently run by
Storj. However, Storj is actively working to achieve full decentralisation of their network in the future.
Additionally, Storj is currently working on improving transfer parallelisation in their native software stack,
and the rates reported here can potentially be considerably increased in the future.

In conclusion, because of the inherent decentralised and international nature of scientific collaborations,
one can reasonably expect that emergent decentralised technologies have the potential to be very suitable
to support global scientific efforts. We found the decentralised storage services proposed by Storj to already
demonstrates impressive availability and performances across large distances, and we expect significant
improvements to be implemented as the technology evolves. Because of its high resilience and geographical
availability, this type of service appear suitable for data curation, long-term storage and sharing of
published scientific data, perhaps as a layer above more traditional storage focused on very-high transfer
rates for large, internal data involved in the scientific calculation themselves. This study entirely focuses on
performances and technical aspects, although we acknowledge that in practice cost-efficiency is an
additional, crucial factor to consider, which could be quantified at a later stage.

For the future, it would be very interesting to continue studying Storj decentralised cloud as the technology
evolves. Storj started integrating an S3-compatible backend in satellites which will even further increase the
availability of the data. Additionally, a number of things can still be done in term of exploring opportunities
for parallelising transfers, and Storj is actively exploring that. Finally, we found the perspective of a fully
decentralised network to be exciting as it will allow for domain-specific satellites to be deployed, which is
potentially very suitable for scientific data curation.

	Storing high-performance computing data using Storj Decentralised Cloud Storage
	Introduction and objectives
	Procedure
	Synthetic data generation
	File chunking
	File transfer
	Geographical location analysis

	Data transfer performances
	Upload
	Download
	Parallelisation strategies

	Geographical distribution analysis
	Outlook and perspectives

